Fast Matching by 2 Lines of Code for Large Scale Face Recognition Systems
نویسندگان
چکیده
In this paper, we propose a method to apply the popular cascade classifier into face recognition to improve the computational efficiency while keeping high recognition rate. In large scale face recognition systems, because the probability of feature templates coming from different subjects is very high, most of the matching pairs will be rejected by the early stages of the cascade. Therefore, the cascade can improve the matching speed significantly. On the other hand, using the nested structure of the cascade, we could drop some stages at the end of feature to reduce the memory and bandwidth usage in some resources intensive system while not sacrificing the performance too much. The cascade is learned by two steps. Firstly, some kind of prepared features are grouped into several nested stages. And then, the threshold of each stage is learned to achieve user defined verification rate (VR). In the paper, we take a landmark based Gabor+LDA face recognition system as baseline to illustrate the process and advantages of the proposed method. However, the use of this method is very generic and not limited in face recognition, which can be easily generalized to other biometrics as a post-processing module. Experiments on the FERET database show the good performance of our baseline and an experiment on a self-collected large scale database illustrates that the cascade can improve the matching speed significantly.
منابع مشابه
Centralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملHybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition
Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1302.7180 شماره
صفحات -
تاریخ انتشار 2013